adalah (1) ketertutupan bilangan bulat positif: pq dan pq adalah bilangan-bilangan bulat positif untuk semua bilangan-bilangan bulat positif p dan q. (2) hukum trikotomi Untuk setiap pZ berlaku salah satu dari pp! 0, 0, atau p 0. Himpunan bilangan bulat Z disebut suatu himpunan yang terurut karena Z memenuhi hukum trikotomi. Contoh 1.2 3 Bulat Negatif Jika a adalah suatu bilangan bukan nol (a β‰  0) berpangkat bulat negatif, maka berlaku a-n = 1/an Contoh soal : Ubahlah bentuk 5-2 menjadi bilangan berpangkat positif Penyelesaian : dengan mengingat sifat bilangan berpangkat bulat negative maka jawabannya 5-2 = 1/52 = 1/25 Jadi bentuk bilangan berpangkat positif dari 5-2 BulatNegatif. Jika a adalah suatu bilangan bukan nol (a β‰  0) berpangkat bulat negatif, maka berlaku a-n = 1/a n. Contoh soal : Ubahlah bentuk 5-2 menjadi bilangan berpangkat positif. Penyelesaian : dengan mengingat sifat bilangan berpangkat bulat negative maka jawabannya. 5-2 = 1/5 2 = 1/25. Jadi bentuk bilangan berpangkat positif dari 5-2 Maka-45 sama dengan 010010. Jika P merupakan suatu bilangan positif, bilangan komplemen satu n bit - P juga dapat diperoleh dengan mengurangkan P dari 2n - 1. Atau, bilangan komplemen satunya menjadi (2n - 1) - P. Contohnya adalah jika P = 45, -P (Sistem bilangan komplemen satu jarang digunakan karena tidak memenuhi satu kaedah Dα»‹ch Vα»₯ Hα»— Trợ Vay Tiền Nhanh 1s. Halo sahabat Pencinta Matematika, kali ini akan melanjutkan kembali pembahasan tentang Bilangan Bulat, yakni kita akan bahas Bilangan Bulat Negatif Beserta Contoh Soalnya. Yuk disimak.. Sebagaimana yang kita ketahui, bahwa bilangan bulat itu terdiri dari tiga jenis anggota bilangan bulat, yakni yang pertama adalah bilangan bulat positif, yang kedua bilangan bulat negatif, dan ketiga bilangan nol 0 yang mana bilangan ini tidak termasuk kedalam bilangan bulat positif maupun bilangan bulat negatif, tetapi bilangan nol 0 ini berdiri sendiri. Sekarang mari Kita simak Pengertian Bilangan Bulat, Pengertian Bilangan Bulat Negatif dan Contoh Soalnya. Bilangan bulat adalah bilangan yang terdiri dari bilangan cacah 0, 1, 2, 3, … atau ditulis +1, +2, +3,+… dan negatifnya yaitu -1, -2, -3, … -0 dalam bilangan bulat negatif adalah sama dengan 0 sehingga tidak lagi dimasukkan secara terpisah. Bilangan bulat itu tidak dapat ditulis dengan komponen desimal ataupun bilangan pecahan. Sifat-Sifat Operasi Bilangan Bulat Penambahan + Perkalian x Ketertutupan a + b ialah bilangan bulat a Γ— b ialah bilangan bulat Asosiativitas a+b+c = a+b+c aΓ—bΓ—c = aΓ—bΓ—c Komutativitas a+b= b+a aΓ—b = bΓ—a Eksistensi Unsur-Unsur Identitas a + 0 = a a Γ— 1 = a Eksistensi Unsur-unsur Invers a + βˆ’a = 0 Distribusivitas aΓ—b+c = aΓ—b+aΓ—c Tidak ada pembagi nol apabila a Γ— b =0, jadi a = 0 atau b = 0 atau kedua-duanyanya Setelah kita mengulas sedikit tentang pengertian bilangan bulat, maka selanjutnya kita langsung ke pembahasan pokok yaitu tentang pengertian Bilangan Bulat Negatif dan Contoh-Contoh Soalnya. Pengertian Bilangan Bulat Negatif Pengertian dari Bilangan Bulat Negatif ialah bilangan yang merupakan salah satu dari bilangan bulat yang memiliki tanda negatif - sebelum angkanya. Didalam bagan garis bilangan, bilangan bulat negatif ini yang berada di deretan sebelah kiri bilangan 0. Contoh bilangan bulat negatif yang sudah sering kita jumpai ialah sebagai berikut -1, -2, -3, -4, -5, -6, … dan seterusnya. Bilangan bulat negatif ini apabila semakin besar angka setelah tanda negatif - maka akan semakin kecil nilainya. Contohnya -20 < -1 maka angka -20 lebih rendah atau lebih kecil nilainya dari pada angka -1. Perhatikan Gambar Berikut Gambar Bagan Garis Bilangan Bulat Negatif Perhatikan arah katak yang kekiri, semakin kekiri bilangan bulat negatif tersebut maka semakin kecil pula nilai suatu bilangan. Bilangan Bulat Negatif Ganjil dan Bilangan Bulat Bulat Negatif Genap Sama hal nya dengan bilangan bulat positif, bilangan bulat negatif ini juga dibagi menjadi dua bilangan, yaitu bilangan bulat negatif ganjil dan bilangan bulat negatif genap. Bilangan Bulat Negatif Ganjil Bilangan Bulat Negatif Ganjil ialah bilangan bulat negati yang tidak akan habis dibagi dua 2. Contoh -1, -3, -5, -7, – dst.. Bilangan Bulat Negatif Genap Bilangan Bulat Negatif Genap ialah Bilangan bulat genap negatif yang habis dibagi dua 2 atau kebalikan dari bilangan bulat negatif ganjil. Contoh -2, -4, -6, -8, – dst… Contoh – Contoh Soal Bilangan Bulat Mari kita sempurnakan pengetahuan kita dengan menyelesaikan beberapa contoh soal berikut Contoh Soal 1 1. Tentukan Hasil Pengoperasian Bilangan Bulat Positif dan Bilangan Bulat Negatif Dibawah Ini 2+-7 = 2–7 = -5 11+-5 = 11-5 = 6 -7+-18 = -7+18 = -25 -15+7 = 7-15= -8 -25+20= 20-25 =-5 Contoh Soal 2 2. Tentukan hasil hitung Campuran Bilangan Bulat Positif dengan Bilangan Bulat Negatif -5+15-5= -5+10 = 10-5 =5 7-4+10= 6+4+10 =21 -55-20+40 = -55+20+40= -55+60=60-55=5 255+-70-120 = 255+-70+120=255-70+120=185+120 =305 Contoh Soal 3 3. Hitunglah hasil dari 213 – 10 + 4×–2 = … 21 3–10+4×–2 = 21–7–8 = –3–8 = – 14. Hitunglah hasil dari 25 + 7×–5 adalah ….Jawab25 + 7 Γ— –5 = 25 – 35 = –105. Hitunglah hasil dari –10 + 20Γ—4 ––6 3 = … Jawab –12+20Γ—4––63 = –12 + 80 + 6 3 = 68+2 = 70 Contoh Soal 4 4. Hitunglah hasil dari 15+18–3––2Γ—3 adalah…. Jawab 15+18–3––2 Γ— 3 = 15–6––6 = 9+6 = 15 Contoh Soal 5 5. Yang manakah Nlai n yang memenuhi 12+8+–3n=–22 adalah… Jawab 12+8+–3n=–22 20–3n= –22 –3n=–22–20 –3n=–42 n=–3/–42= 14 Contoh Soal 6 6. Hitunglah hasil dari 72–5108 = … Jawab 72– 5108= 72-63 = 9 Contoh Soal 7 7. Mula-mula suhu suatu ruangan ialah 250Β° C. Kemudian ruangan tersebut akan dipergunakan untuk menyimpan telur ayam sebagai bibit, lalu suhunya diturunkan menjadi –30Β° C. Berapa besar perubahan suhu pada ruangan tersebut adalah …. Jawab Perubahan suhu = 25Β°C––3Β°C = 25Β°C+3Β°C = 28Β°C Agar lebih sempurna, silakan kerjakan soal latihan dibawah ini 1. -2 – 4= 2. 8+-9 = 3. -8 + 61 = 4. -5 + -4 = 5. -10 + 9 = 6. 9 + -31 = 7. -27 + -71 = 8. -35 + 78 = 9. 87 + -25 = 10. -171 + 89 = 11. -7 – 9 = 12. 6 – 9 = 13. 7 – -7 = 14. -9 – -5 = 15. 28 – 17 = 16. -29 – 12 = 17. -66 – -63 = 18. 218 – -821 = 19. -72 – 45 = 20. 131 – -152 = 21. 150 – 4 + 3 = 22. -20 + 40 – -10 = 23. 14 + -11 – 21 = 24. -38 – 20 + 1 = 25. 13 + -1 – 40 = 26. -18 – -30 + 50 = 27. 10 – 9 + -1 = 28. -2 + -10 – -37 = 29. -20 – 51 + 50 = 30. -470 + 10 – 30 = 31. 30 + 30-46 – 74 = 32. -78 – -90 + 536 – 23 = 33. -27+-2-27 + 67 = 34. 36 + -56 – -21 + 45 = 35. Disebuah masjid di langkapura terdapat beberapa AC pendingin ruangan. Sebelum AC tersebut dinyalakan, kondisi ruangan tersebut suhu nya adalah 30Β°C. Namun karna watuk sholat zduhur tiba dan sholat berjamaan akan segera didirikan, maka pak marbot pun menyalakan AC tersebut sehingga suhu di dalam masjid pun berubah menjadi 10Β°C. Hitunglah berapa besar perubahan suhu ruangan tersebut Jika kalian sudah selesai mengerjakan, silakan komen atau kirimkan kembali jawaban kalian di bawah ya. oke.. Demikian lah pembahasan kita hari ini mengenai bilangan bulat negatif, semoga bermanfaat ya…. Pengertian Bilangan – Apa itu bilangan? Bilangan merupakan kumpulan angka yang menempati urutan dari kanan sebagai nilai satuan, puluhan, ratusan, ribuan dan seterusnya. Untuk lebih jelasnya lagi kami kan membahas materi makalah Pengertian Bilangan Dan Macam-Macam Bilangan Secara lengkap beserta contohnya. Maka simaklah pembahsannya di bawah ini. Pengertian BilanganMacam-Macam BilanganBilangan PrimaBilangan BulatBilangan CacahBilangan AsliBilangan NolBilangan RealBilangan PecahanBilangan rasionalBilangan IrrasionalBilangan PositifBilangan NegatifBilangan GanjilBilangan GenapBilangan KompositBilangan RiilBilangan ImajinerBilangan KuadratBilangan KompleksBilangan RomawiShare thisRelated posts Bilangan merupakan kumpulan angka yang menempati urutan dari kanan sebagai nilai satuan, puluhan, ratusan, ribuan dan seterusnya. Pengertian lain, bilangan merupakan konsep matematika yang dipakai untuk pencacahan dan pengukuran. Lambang dan simbol yang digunakan untuk mewakili suatu bilangan disebut dengan angka atau lambang bilangan. Konsep bilangan yang sudah bertahun-tahun lamanya sudah diperluas meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks. Macam-Macam Bilangan Terdapat berbagai macam jenis bilangan, berikut ini adalah penjelasan tentang macam-macam bilangan beserta contohnya lengkap. Bilangan Prima Bilangan prima adalah bilangan yang tidak dapat dibagi oleh bilangan lainnya atau disebut dengan bilangan asli kecuali bilangan itu sendiri dan 1. Contoh P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, …..} Bilangan Bulat Bilangan bulat merupakan himpunan bilangan bulat negatif, bilangna nol dan bilangan bulat positif. Contoh B = {…-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5…..} Bilangan Cacah Bilangan cacah yakni adalah suatu himpunan bilangan bulat yang tidak memiliki nilai negatif dan dimulai dari angka nol Contoh C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10….} Bilangan Asli Bilangan asli ialah himpunan bilangan bulat yang dimulai dari angka satu dan seterusnya ke atas, sedangkan logikawan menjelaskan bahwa bilangan asli termasuk dengan himpunan 0 nol. Contoh N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10…} Bilangan Nol Bilangan nol merupakan bilangan nol 0 itu sendiri. Contoh N = {0} Bilangan Real Bilangan real merupakan suatu himpunan bilangan berupa gabungan antara bilangan rasional dan bilangan irasional. Contoh R = { 0, 1, ΒΌ, β…”, √2, √5, ….. } Bilangan Pecahan Bilangan pecahan adalah bilangan yang memiliki penyebut dan pembilang. Misalnya saja 1/2, angka 1 = penyebut dan angka 2 = pembilang. Contoh H = { β…“, β…”, β…›, ….. } Bilangan rasional Bilangan rasional merupakan suatu bilangan yang bisa dinyatakan dalam bentuk a/b, dengan penjelasan a dan b adalah merupakan bilangan bulat dan b tidak sama dengan 0 b β‰  0 . Contoh R = { ΒΌ, ΒΎ, …. } Bilangan Irrasional Bilangan irrasional merupakan suatu himpunan bilangan real yang tidak dapat di bagi, bilangan irrasional juga tidak dapat dinyatakan dalam bentuk pecahan. Contoh I = { √2, √3, √5, √6, √7, ….. } Keterangan √9 = 3 berarti √9 bukan bilangan irrasional. Bilangan Positif Bilangan positif merupakan bilangan yang bernilai positif selain nol. Contoh P = {2, 3, 4, 5, ΒΌ, ….} Bilangan Negatif Bilangan negatif ialah bilangan yang bernilai negatif. Contoh N = { -5, ΒΌ, …. } Keterangan -1/-4 = ΒΌ, jadi -1/-4 bukan bilangan negatif. Bilangan Ganjil Bilangan ganjil ialah suatu bilangan yang jika dibagi 2Dua maka akan tersisa 1 atau bilangan yang dapat dinyatakan dengan 2n-1 dengan n adalah bilangan bulat. Contoh Ga = {-3, -1, 1, 3, 5, 7, 9, 11, 13, 15,…. } Bilangan Genap Bilangan genap merupakan suatu bilangan yang akan habis jika dibagi menjadi 2dua. Contoh Ge = {2, 4, 6, 8, 10, 12, 14, 16, 18,…} Bilangan Komposit Bilangan komposit ialah bilangan asli yang lebih besar dari satu namun tidak termasuk dalam bilangan prima. Contoh K = {4, 6, 8, 9, 10, 12, 14, 16,….} Bilangan Riil Bilangan Riil ialah bilangan yang dapat ditulis dalam bentuk desimal. Contoh L = { 5/8, log 10,…} Bilangan Imajiner Bilangan imajiner merupakan bilangan i satuan imajiner, dimana i merupakan lambang bilangan baru yang bersifat i2 = -1 bilangan kompleks Contoh I = { i, 4i, 5i, …..} Bilangan Kuadrat Bilangan kuadrat merupakan bilangan yang dihasilkan dari perkalian suatu bilangan dengan bilangan itu sendiri sebanyak dua kali dan disimbolkan dengan pangkat 2. Contoh K = {22, 32,42,52,62,…} Bilangan Kompleks Bilangan kompleks merupkan suatu bilangan yang memiliki notasi seperti a + bi, yang mana a dan b adalah himpunan bilangan real, dan i merupakan himpunan bilangan imajiner. Contoh K = {2-3i, 8+2, …..} Bilangan Romawi Bilangan romawi merupakan suatu sistem penomoran yang berasal dari romawi kuno menggunakan huruf latin yang melambangkan angka numerik. Contoh M = {I, II, III, IV, V, VI, VII, VIII, XI, X, XI, C, CC, CD, D, CM, M,…..} Demikianlah pembahasan kami mengenai materi Pengertian Bilangan Dan Macam-Macam Bilangan, Semoga bermanfaat.. Artikel lainnya Contoh Reaksi Asam Basa – Pengertian, dan Teori Asam Basa Pengertian Destilasi – Prinsip, Tujuan, Dan Macam-Macam Contoh Perubahan Kimia dan Ciri-Ciri Perubahan Kimia Pertama, perhatikan pernyataan habis dibagi 6 untuk setiap bilangan non-negatif n . Karena akan dibuktikan pernyataan untuk setiap bilangan non-negatif n , yaitu n β‰₯ 0 , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan habis dibagi 6 maka habis dibagi 6 Perhatikan bahwa Karena 12 habis dibagi 6, maka habis dibagi 6. Sehingga benar. LANGKAH 2 Buktikan untuk sembarang bilangan bulat non-negatif k , jika bernilai benar mengakibatkan bernilai benar. Perhatikan pernyataan habis dibagi 6 Asumsikan habis dibagi 6 bernilai benar. Perhatikan pernyataan habis dibagi 6 Perhatikan bahwa Karena 6 habis dibagi 6, maka juga habis dibagi 6. Karena habis dibagi 6, maka juga habis dibagi 6. Dengan demikian, didapat bahwa habis dibagi 6 atau bernilai benar. Karena 1. benar. 2. Untuk sembarang bilangan bulat non-negatif k , jika bernilai benar mengakibatkan bernilai benar. Maka, benar untuk setiap bilangan bulat non-negatif n , menurut prinsip induksi matematika. Kemudian, perhatikan pernyataan habis dibagi 5 untuk setiap bilangan non-negatif n . Karena akan dibuktikan pernyataan untuk setiap bilangan non-negatif n , yaitu n β‰₯ 0 , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan habis dibagi 5 Maka habis dibagi 5 Perhatikan bahwa Karena 0 habis dibagi 5, maka habis dibagi 5. Sehingga benar. LANGKAH 2 Buktikan untuk sembarang bilangan bulat non-negatif k , jika bernilai benar mengakibatkan bernilai benar. Perhatikan pernyataan habis dibagi 5 Asumsikan habis dibagi 5 bernilai benar. Perhatikan pernyataan abis dibagi 5 Perhatikan bahwa Karena 5 habis dibagi 5, maka juga habis dibagi 5. Karena habis dibagi 5, maka juga habis dibagi 5. Dengan demikian, didapat bahwa habis dibagi 5 atau bernilai benar. Karena 1. benar. 2. Untuk sembarang bilangan bulat non-negatif k , jika bernilai benar mengakibatkan bernilai benar. Maka, benar untuk setiap bilangan bulat non-negatif n , menurut prinsip induksi matematika. Pernyataan 1 β€œ3 membagi " Perhatikan bahwa Karena β€œ habis dibagi 6” bernilai , maka juga habis dibagi 6. Selanjutnya, karena 6 = 2 Γ— 3 dan 2 habis dibagi 2, maka pasti abis dibagi 3 atau 3 membagi . Maka pernyataan 1 bernilai benar. Pernyataan 2 β€œ membagi 15” Karena β€œ habis dibagi 5” bernilai benar dan pada penjelasan pernyataan 1 juga telah ditunjukkan bahwa habis dibagi 3, maka pasti perkaliannya, yaitu , juga habis dibagi 5 Γ— 3 = 15 . Dengan kata lain, habis dibagi 15 atau 15 membagi . Perhatikan bahwa belum tentu membagi 15. Maka pernyataan 2 tidak terbukti benar. Pernyataan 3 β€œ10 membagi ” Perhatikan bahwa karena 2 membagi 2 dan 5 membagi , maka 2 Γ— 5 = 10 juga membagi . Kemudian, karena 10 membagi , maka 10 juga membagi . Maka pernyataan 3 bernilai benar. Dengan demikian, pernyataan yang bernilai BENAR adalah pernyataan 1 dan 3. Jadi, jawaban yang tepat adalah B.

jika n adalah suatu bilangan bulat negatif